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The results of simulations of transient multicomponent surface diffusion in a microporous ad-
sorbent are given for various conditions. The generalized Maxwell-Stefan theory was applied
to describe the diffusion phenomena. The diffusion equations were solved numerically. The
transient uptake of a binary mixture and the counterdiffusion of two sorbate species in aslab
were simulated. Some striking phenomena of multicomponent diffusion are presented. The
relation to the approximate solution obtained by the linearized theory of multicomponent mass
transfer is discussed. The simulations are compared with various results found in the literature.

Scparation and conversion processes taking place on solid sorbents, e.g. zeolites
often proceed under non-equilibrium conditions. The understanding and modelling
of the diffusion behaviour of mixtures in these materials has practical importance
because of its influence on the selectivity of these separations and reactions. Surface
diffusion is also of fundamental interest in physical chemistry. In principle, a mole-
cule moving over a surface can be seen as a probe of the interactions with the surface
and with the other molecules in its vicinity.

Diffusion in micropores (size smaller than 2 nm) is strongly temperature and con-
centration dependent. The diffusing molecules never really leave the force field of
the surface. In zeolites the intracrystalline pores or openings are of molecular dimen-
sions and the diffusing molecules are likely to hinder each other at high surface
occupancies. Multicomponent diffusion behaviour is of special interest. The transient
uptake of a mixture of a fast diffusing-weakly adsorbing species and a slow diffusing-
-strongly adsorbing species in zeolites is typical: the uptake of the fast diffusing
species exceeds the equilibrium value in the approach to the equilibrium situation
(see e.g. refs' 7).

The transient uptake of mixture components in microporous sorbents has been
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simulated numerically by Round etal’ (using a simplified Onsager approach,
neglecting cross terms). Marutovsky and Biilow*® described multicomponent
diffusion in zeolites by the generalized Fick approach and the linear driving force
model. Krishna? applied the generalized Maxwell-Stefan (GMS) approach to
surface or temperature activated diffusion. The linearized theory of multicomponent
mass transfer®® was used to obtain solutions of the last two models mentioned.

Here, the objective is to numerically simulate the transient uptake of mixtures
in microporous adsorbent particles, with the most rigorous model possible, thereby
avoiding the earlier used approximations.

THEORETICAL

The transient diffusion behaviour of a binary mixture in an infinite plane slab is
simulated. The equation of continuity or conservation of mass connects concentra-
tion and diffusive flux in the adsorbent:

n,Vo(z, 1) + V,Ji(z, ) =0 (i=12...n). (1)

We may combine this equation with an equation describing the phenomenon of
the diffusive surface flux to obtain the diffusion equation. To this end the generalized
Maxwell-Stefan equations were applied. This results in a set of nonlinear coupled
partial differential equations (PDE). With the proper initial and boundary conditions
this is sufficient to determine uniquely the functions 6,(z, ¢).

Generalized Maxwell-Stefan Theory

The generalized Maxwell-Stefan equations’

8' et 9,0 ntt 9-]1 - BIJ .
(ki) = Y (uy —ug) =3 -—— (i

- — =12,...n 2
RT i=1 Dy =t nD; ) @)

employ the gradients of the chemical potentials as driving forces, in agreement
with the theory of irreversible thermodynamics. The influence of the substrate is
incorporated in the model by considering the vacant sites ¥ to be the (n + ljth
constituent of the system’. It is pseudo-species to which thermodynamic quantities
can be assigned. Only n GMS-equations are independent because the Gibbs-Duhem
equation gives an extra relation. Surface diffusion is a special case. There can be
no drift velocity of the (n + 1) component mixture. Since the total number of sites
is fixed, the vacancy flux balances the fluxes of adsorbed species. For sorption of
two species the physical interpretation of Eq. (2) is as follows'®. The driving force
of component 1 is balanced by the frictional drag on molecules 1 moving past those
of component 2 with a relative velocity (u; — uzj, weight factor 8,0, and inter-
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molecular drag coefficient 1/2,, and of molecules 1 moving past the surface sites
(component V) with a relative velocity (u; — uy), weight factor 6,0y and drag coeffi-
cient 1/2,y. The Onsager reciprocal relations show that the GMS diffusivities are
symmetrical:

gij=@ji (l,_]= 1,2,.‘.’1, V). (3)
The GMS diffusivities 2,y can be related to single sorbate diffusivities’. The GMS

diffusivity 2, ,, describing the interchange of species 1 and 2 adsorbed on the surface,
is interpolated between two limiting values

Lim@lz =91V? Lim@lz =@2v, (4)

611 8;—1

by the multicomponent Vignes equation’
01/(6:+86 62/(61+02) _ 01/(8,+8 82/(6,+83)
@12 = (@12 Bi/—(oll 2) (@12)02/»(11 2) (glv) 1/(81+862) (@2\') 2/(81+6) (5)

The gradient of the chemical potential can be expressed in the gradients of fractional
coverages:

8. L ou,; do; i s
— v, (u; =6, _'_._J_—z ri,.— (i=1,2,...n). 6

The result is that thermodynamic factors I';; are introduced in the equations. These
factors increase with total occupancy in the case of convex isotherms. For a Langmuir
type adsorption isotherm

6= —20 (i=1,2..m), (7)
1+ 2 byps
i=
describing the equilibrium between an ideal binary gas mixture and a solid ad-
sorbent, the factors are given in the Appendix (Eq. (15)).

The GMS-equations (2) in combination with Eq. (6) may be written’ in n-dimen-
sional matrix form to give explicit relations for the fluxes

() = —nf8]" (1152, ®

where [B] ™! contains the GMS diffusivities. Substitution of Eq. (8) in the continuity
equations (1) leads to the diffusion equations. From this notation the relation with
the generalized Fick approach” becomes apparent:

[D] = [B]™'[I]. ©)
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In the Appendix the elements of [B]™' and [D] are given. The GMS approach,
starting from physically meaningful drag coefficients, results in a concentration
dependence of the Fick diffusivities [ D], composed of transport and thermodynamic
factors.

In general, different saturation capacities n, will exist for different molecules. The
surface occupancies may be expressed in the number of sites covered per unit area
instead of the number of molecules adsorbed per unit area. The total number of
sites may be defined by e.g. n, ;, the saturation capacity of species 1. By this definition
the number of sites is fixed and the vacancy flux balances the fluxes of sites covered
by species 1 and 2. We only have to multiply the flux of sites covered by species 2
by n, ,/n, ; to obtain the mole flux of species 2. The values of 2;; do not depend
on the definition.

Numerical Solution Method

The differential equations describing the model are non-linear and must be solved
numerically. The continuum equations were discretized in the x-coordinate by an
explicit finite difference approximation''. This leads to a set of coupled first order
differential equations for each slice. The discretized versions of the PDE’s were
integrated in time using a fourth-order Runge-Kutta procedure with variable step-
size. The procedure solves stiff equations by a semi-implicit method and non-stiff
by an explicit method. The Runge-Kutta procedure estimates the stepsize within
the maximum stepsize At allowed. The finite difference approximations for the fluxes
are:

(7)) = [D(o( 1, ) UELD = 6

Ax2
(J) = [D (9“‘1; 9">] (9"‘;; %) (k=2..n), (10)
(Jn+1) = 0.

The initial conditions (IC) and the boundary conditions (BC) for transient uptake
are

6(x,0)=0; —l<x<1l; t=0,
0(£1, 1) =6,; x==%1; 1<0, (11)

i0,.(0,t)=0; x=0; t20.
ox

A discontinuity exists at (x,?) = (4+1,0) in the concentration functions 6;(x, t).
Since [D] depends on the concentrations (Eq. (16)) there is also a discontinuity
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in [ D] at the start. An alternative scheme was also attempted to avoid the disconti-
nuity in [D]:

() = [0 B8 (o= 1), (12)

The local truncation errors introduced by these boundary layer effects do not pene-
trate the solution and decay provided the method is stable. The stability, the growth
of the deviation from the true solution, cannot be derived for a non-linear problem.
In that case the stability does not only depend on the finite difference scheme but
also on the solution being obtained. If the solution becomes unbounded for bounded
input values and oscillates with increasing amplitude it is termed unstable.

RESULTS AND DISCUSSION

Simulations were performed at boundary conditions near saturation. In this situation
the molecules will hinder each other most and multicomponent effects are likely to
be more pronounced. '

Effect of Grid Size

The behaviour in the boundary layer is the main concern. The finite difference ap-
proximation is a poor one at the boundary where the gradients at the start will
be infinitely large. Use of Eq. (10) leads to stable solutions depending on the input
values. The local truncation errors decay and an accurate solution is obtained. This
is shown in Fig. 1 (solid curves 2—4 coincide). The errors may oscillate with de-
caying amplitude when the discontinuities in () and [D] are large. Decreasing At
and increasing Ax may eliminate the oscillations.

Use of another difference scheme, Eq. (12), does not lead to oscillations for these
input values used, but the solution is inaccurate. Refining the grid prevents to a certain

10 T T T T T

species 2

FiG. 1

Convergence of the numerical solutions. Eq.
(12): broken lines, Eq. (J0): solid lines.
Curves: 1 Ax=02; 2 Ax=0'10; 3 Ax= - . i
= 0:05; 4 Ax = 0025, AFo=1.10"5. IC: - species 1

0,(x,0)= 6,(x,0)=0. BC: 6;(£1,1)= of | 1 1 . \
= 0-10; 6,(F1, 1) = 085, D, y/D,y = 100 0 o1 o0z 03 04 g 06
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extent the solution from being swamped by the boundary layer effects and this
solution converges to the solution using Eq. (10) (Fig. 1).

All simulations in Figs 26 were carried out for Ax = 0-025 and AFo = 1.10"°%
using Eq. (10).

Round et al.® obtained solutions of a simplified Onsager model numerically.
These model equations can also be solved by the numerical procedure used to solve
the GMS model. The following equations for the fluxes were used:

Vi, .
Ji = _nsLiioi'_l 1 = 1,2..." . 13
Aoy ) (1)

The Onsager coefficients L,; and L,, were assumed constant and the cross coeffi-
cients L,, and L,, were assumed zero. This means that the matrix [B]~' may be
replaced in the numerical procedure by the diagonal matrix [L]. The results of
Round et al.® were reproduced.

Effect of the Ratio of GMS Diffusivities and the Boundary Conditions

The transient uptake of a binary mixture of sorbate molecules was simulated for
several diffusivity ratios 2,y/9,y. This is shown in Figs 2 and 3 for different
boundary conditions. In all cases a maximum in the uptake of the fastest diffusing
species 1 is observed. The height of the maximum relative to the equilibrium value

10 T T T T T 10 T T T T T
species 2
B 8 species 2
2
T 0.6+ 100 100 1
0
B 04k 10 .
species 1
species 1 7] 0.2 /r
1 | { 1 I 1
Fo 06 0 01 0.2 03 0.4 Fo 06
FiG. 2 FiG. 3

Transient uptake of a binary mixture in
a plane slab as function of the Fourier
number for various ratios of diffusivities
Dv/D,y, as indicated. IC: 6,(x,0) =
= 6,(x,0)= 0. BC: 6,(+1,0=010; 6,
(£1,8)= 085

Transient uptake of a binary mixture in
a plane slab as function of the Fourier
number for variours ratios of diffusivities
D,v|9,y, as indicated. IC: 6,(x,0) =
= 6,(x,0)= 0, BC: 6,(+1,1)=020; 6,
(£1, =075
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is approximately the same in Figs 2 and 3. Decreasing 2, results in a lower and
broader maximum. The uptake of species 2 is not much affected by variation of
2,v. The ratio of the uptake of both species is nearly constant up to the maximum
in the curve. From then on molecules 1 are replaced by molecules 2 and the curves
are symmetrical with respect to a horizontal line in Figs 2 and 3.

The counterdiffusion behaviour, the (partial) replacement of species 1 by species 2
and vice versa was also simulated. Both cases are shown in Fig. 4. The exchange
of the slow diffusing component by the fast diffusing component is faster than the
exchange of the fast diffusing component by a slow diffusing component. The
numerical solution leads to the same resuit as the approximate solution by Krishna’.
The uptake of species 1 and desorption of species 2 is accelerated because the de-
creasing frictional drag (1/9,,) between these components with increasing concentra-
tion of species 1 (Eq. (5)) facilitates the interchange of molecules 1 and 2.

Concentration Profiles

The concentration profiles in a half-slab are shown in Fig. 5 for various Fourier
numbers. The solutions are symmetrical with respect to the center of the slab. At
the start both species diffuse in the direction of decreasing concentration. For 0-01 <
< Fo < 0-12 species 1 diffuses against its gradient and the local concentration of

1.0 T T T
uptake of 1
8 uptake of 2
0.6 1
04 1
desorption of 1
2
0 desorption of 2
0 1 | 1
0 01 Fo 02
FiG. 4 Fic. §

Transient counterdiffusion of species 1 and 2
in a slab. @, y/2,y = 100. Replacement of
species 2 by species 1, IC: 6,(x, 0) = 0-10;
6,(x, 0) = 0-85. BC: 6,(+1,1)= 085 6,
(%1, 1) = 0-10. Replacement of species 1 by
species 2, IC: 6,(x, 0) = 0-85; 0,(x,0)=
= 0'10. BC: 0,(%£1, 1) = 0-10; (=1, 1) =
= (-85

Profiles of concentration vs distance for
glv/gzv = 100. IC: Ol(x, 0) = 02(X, 0) =
=0. BC: 0,(£1,0)=010; 8y(%1,0)=
= (-85, Solid line: species 1, broken line:
species 2
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this species exceeds the equilibrium concentration. This behaviour can be understood
from the physical picture of the GMS-model. The gradient of the chemical potential
of species 2, the thermodynamic force of component 2 acts on component 1 via the
friction of molecules 2 on 1. Where the gradient of species 2 is large, this may lead
to species 1 diffusing against its gradient. Beyond the maximum (Fo > 0-12) the
profiles have become symmetrical with respect to a horizontal line in Fig. 5 and
counterdiffusion sets in.

Comparison with the Approximate Solution

The GMS model for transient uptake in microporous sorbents was solved by Krishna’
using the linearized theory of multicomponent mass transfer®:?. This theory relies on
the assumption of constancy of the Fick diffusivity matrix [D] along the diffusion
path. However, [ D] is a function of the concentrations and will have to be calculated
at average concentrations when using this method. With this assumption, the uptake
of n species is the n-dimensional matrix analog of the single sorbate uptake solution
F. The square matrix function [F] of the averaged Fickian matrix can be evaluated
after-a small time interval AFo using Sylvester’s theorem (see e.g. ref.”). The new
concentrations so obtained are used to calculate [ D] for the next time interval and
so on. The procedure starts with the Fickian matrix calculated for an empty particle.
The numerical procedure starts with very different values of [D], especially when the
boundary concentrations are high. The maximum calculated by the approximate
method for the same conditions is much higher (Fig. 6). The better agreement with
the solutions obtained by use of Eq. (12) (Fig. 1, curve 1) can be understood from the
fact that this scheme also starts with [D] calculated at zero concentrations. For
smaller grid sizes this solution converges to the numerical solution obtained via
Eq. (10). In general the approximation will be less accurate in the first part of the
solution and when the discontinuities at the boundary are large.

10 T T T ] T
species 2
-

FI1G. 6

Comparison with the approximate solution
species 1 7 (AFo = 0:0018) obtained by the linearized
theory. IC: 6,(x,0)= 0,(x,0)= 0. BC:
0 o1 02z 03 0b g O 01 (£1,0) = 010; 6;(1, 1) = 085 Dyy/
D2y = 100
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Comparison with Experiment

The simulations in Figs 2 and 3 are very similar in shape to measurements of the
transient uptake of nitrogen and methane in zeolite A by Habgood!. The loading
of nitrogen overshoots its equilibrium value as in Fig. 2. For a higher boundary
concentration of nitrogen it overshoots the loading of methane as well, as in Fig. 3.
The same was observed®* for the mixture uptake of benzene and heptane in zeolite X.
The uptake of mixtures of carbon dioxide and sulfur dioxide in mordenite was studied
by Ma and Roux?. These uptake curves are very similar in shape to the simulations
in Fig. 2.

CONCLUSIONS

Solutions of the GMS model for surface diffusion were obtained by this numerical
method. The solutions for transient uptake compare well with experimental transient
uptake curves of binary mixtures in zeolites found in the literature. The simulated
concentration profiles in a slab clarify the multicomponent diffusion effects found
in zeolites.

To apply the Maxwell-Stefan approach in the description of transient multi-
component surface diffusion a numerical solution method is necessary. Application
of the linearized theory may lead to a significant deviation. The reason for the
different results is the strong dependence of the Fick diffusivities on the concentra-
tions in a Langmuirian sorbed phase, especially when the total occupancy of the
sites is high. This dependence is mainly due to the influence of the thermodynamic
correction factors in the Fick diffusivities. Adsorption isotherms for microporous
sorbents are usually strongly non-linear and near saturation this leads to a high
sensitivity of these factors on concentration. The linearized theory relies on the
assumption of constant Fick diffusivities along the diffusion path. In many cases
of surface diffusion this assumption is not a good one at the start of the uptake and
errors will occur in this region of the solution.

The authors would like to thank dr. ir. A. W, Gerritsen for providing the code of the Runge-
~Kutta procedure,

SYMBOLS
{4 = [B]~! with elements Ay
b, coefficient in Langmuir isotherm, Eq. (7), mz/N
[B] matrix of inverted GMS-diffusivities deflned by Eq. (8), s/m2
7 GMS diffusivity, m/s?
(D] matrix of Fick diffusivities with elements D;;, m?/s
F single sorbate function giving the approach to equilibrium
Fo = @, yt/I* Fourier number
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(€3] column vector of diffusive fluxes, mol/ms
[L} matrix of Onsager coefficients with elements L, 1 m2/s
7 half-thickness of the slab, m
n number of sorbates
ng total surface concentration at saturation, mol/m?
N number of slices in the half-slab
»; partial pressure of 7 in the bulk phase, N/m2
R gas constant, J/mol/K
t time, 8
T temperature, K
u velocity of diffusion, m/s
x = z/l dimensionless distance from the center of the slab
z distance from the center of the slab, m
[I) matrix of thermodynamic correction factors defined by Eq. (6) with elements I'; i
B chemical potential of J, J/mol
spreading pressure, N/m
()} column vector of fractional surface occupancies
Subscripts
l, j, 1,2 refers resp. to species 7,7, 1, 2
k refers to the number of the slice in the slab
s refers to surface property
t refers to time
T, ¢ refers to gradient obtained under conditions of constant temperature and spreading
pressure
\% refers to vacancies
z refers to coordinate along diffusion path
Mathematical Symbols
[1] square matrix of dimension n
() vector of dimension n
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APPENDIX’

The elements of [4] = [B] ™" for diffusion of a mixture of two sorbates in a sorbent
are:

Ay = 2,001y + (1 = 0)) 2,)/(6,22y + 0,2,y + 0vD,,)

Ay = 0D, D v — 2,,))(6,22v + 6,D v + 0vD )

Ayt = 0,2 Doy — 21,))(6:D2v + 6D,y + Ov2,,)

Ay = D,(0,2,v + (1 = 6,)D,,)/(6,D,v + 6D,y + 6vD,;). (14)

The elements of the matrix of thermodynamic factors [I'] in the case of a binary
Langmuir adsorption isotherm are:

ry,=-— , 'iy=1+4+T4,,

12 1_91_92 11 12

F21 = 92——, rzz = 1 + r21- (15)
1_91—82

The element of the Fickian matrix [ D] are obtained by matrix multiplication (Eq. (9)):
Dy = ATy + A2,
Dy, = Ay + 4125,
D,y = Ay T'yy + Azl 5,
Dy, = Ay Ty + Azl 3, . (16)
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