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The results of simulations of transient multicomponent surface diffusion in a microporous ad- 
sorbent are given for various conditions. The  generalized Maxwell-Stefan theory was applied 
to describe the diffusion phenomena. The diffusion equations were solved numerically. The 
tranqient uptake of a binary mixture and the counterdiffusion of two sorbate species in a slab 
were simulated. Some striking phenomena of multicomponent diffusion are presented. The  
relation to the approximate solution obtained by the linearized theory of multicomponent mass 
transfer is discussed. The simulations are compared with various results found in the literature. 

Separation and conversion processes taking place on solid sorbents, e.g. zeolites 
often proceed under non-equilibrium conditions. The understanding and modelling 
of the diffusion behaviour of mixtures in  these materials has practical importance 
because of its influence on the selectivity of these separations and reactions. Surface 
diffusion is also of fundamental interest in physical chemistry. In principle, a mole- 
cule moving over a surface can be seen as a probe of the interactions with the surface 
and with the other molecules i n  its vicinity. 

Diffusion in  micropores (size smaller than 2 nni) is strongly temperature and con- 
centration dependent. The diffusing molecules neker really leave the force field of 
the surface. In zeolites the intracrystalline pores or openings are of molecular dimen- 
sions and the diffusing molecules are likely to hinder each other at high surface 
occupancies. Multicomponent diffusion behaviour is of special interest. The transient 
uptake of a mixture of a fast diffusing-weakly adsorbing species and a slow diffusing- 
-strongly adsorbing species i n  zeolites is typical: the uptake of the fast diffusing 
species exceeds the equilibrium value in the approach to the equilibrium situation 
(see e.g. refs*-4). 

The transient uptake of mixture components in  microporous sorbents has been 
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simulated numerically by Round et al.’ (using a simplified Onsager approach, 
neglecting cross terms). Marutovsky and B u l ~ w ~ ’ ~  described multicomponent 
diffusion in zeolites by the generalized Fick approach and the linear driving force 
model. Krishna’ applied the generalized Maxwell-Stefan (GMS) approach to 
surface or temperature activated diffusion. The linearized theory of multicomponent 
mass transfer839 was used to obtain solutions of the last two models mentioned. 

Here, the objective is to numerically simulate the transient uptake of mixtures 
in microporous adsorbent particles, with the most rigorous model possible, thereby 
avoiding the earlier used approximations. 

THEORETICAL 

The transient diffusion behaviour of a binary mixture in an infinite plane slab is 
simulated. The equation of continuity or conservation of mass connects concentra- 
tion and diffusive flux in the adsorbent: 

n, v,ei(z, t )  + V = J ~ ( Z ,  t )  = o ( i  = 1, 2 ... n)  . 
We may combine this equation with an equation describing the phenomenon of 
the diffusive surface flux to obtain the diffusion equation. To this end the generalized 
Maxwell-Stefan equations were applied. This results in a set of nonlinear coupled 
partial differential equations (PDE). With the proper initial and boundary conditions 
this is sufficient to determine uniquely the functions Oi(z, t ) .  

Generalized Maxwell-Stefan Theory  

The generalized Maxwell-Stefan equations7 

8 . J .  - eiJj  
( i  = 1,2,  ... n )  - - v(&,+ = c - ( u .  - u . )  = c J- n +  1 eiej n +  1 

(2) 
@ i  

1 J  RT j = 1  gJ.. j = t  n , B i j  

employ the gradients of the chemical potentials as driving forces, in agreement 
with the theory of irreversible thermodynamics. The influence of the substrate is 
incorporated in the model by considering the vacant sites V to be the ( n  + 1)th 
constituent of the system7. It is pseudo-species to which thermodynamic quantities 
can be assigned. Only n GMS-equations are independent because the Gibbs-Duhem 
equation gives an extra relation. Surface diffusion is a special case. There can be 
no drift velocity of the ( n  + 1) component mixture. Since the total number of sites 
is fixed, the vacancy flux balances the fluxes of adsorbed species. For sorption of 
two species the physical interpretation of Eq. ( 2 )  is as follows’o. The driving force 
of component 1 is balanced by the frictional drag on molecules 1 moving past those 
of component 2 with a relative velocity ( u l  - u2) ,  weight factor 0102 and inter- 
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molecular drag coefficient l/ka,, and of molecules 1 moving past the surface sites 
(component V )  with a relative velocity (ul - uv), weight factor 1 9 ~ 8 ~  and drag coeffi- 
cient l/dIv. The Onsager reciprocal relations show that the GMS diffusivities are 
symmetrical: 

gij = Bji ( i , j  = 1 ,2 ,  ... n ,  v). (3) 

The GMS diffusivities giV can be related to single sorbate diffusivities’. The GMS 
diffusivity BIZ, describing the interchange of species 1 and 2 adsorbed on the surface, 
is interpolated between two limiting values 

by the multicomponent Vignes equation’ 

The gradient of the chemical potential can be expressed in the gradients of fractional 
coverages: 

(6)  
e. d p  doj - doj 
RT j = 1  doj dz j = 1  dz 
2 VZ(pJT,+ = ei C -I - - C rij - ( i  = 1 , 2 ,  ... n) . 

The result is that thermodynamic factors Tij are introduced in the equations. These 
factors increase with total occupancy in the case of convex isotherms. For a Langmuir 
type adsorption isotherm 

biPi ei = 
n 

( i  = 1 ,  2, ... 4 ’ (7) 
1 + 2 bjpj 

j=  1 

describing the equilibrium between an ideal binary gas mixture and a solid ad- 
sorbent, the factors are given in the Appendix (Eq. (15)). 

The GMS-equations (2) in combination with Eq. (6) may be written’ in n-dimen- 
sional matrix form to give explicit relations for the fluxes 

where [ B ] - ’  contains the GMS diffusivities. Substitution of Eq. (8) in the continuity 
equations (1) leads to the diffusion equations. From this notation the relation with 
the generalized Fick approach’ becomes apparent: 

[D] = [ B ] - ’  [r] . (9) 
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I n  the Appendix the elements of [ B ] - '  and [D] are given. The GMS approach, 
starting from physically meaningful drag coefficients, results in a concentration 
dependence of the Fick diffusivities [D], composed of transport and thermodynamic 
factors. 

In general, different saturation capacities n ,  will exist for different molecules. The 
surface occupancies may be expressed in the number of sites covered per unit area 
instead of the number of molecules adsorbed per unit area. The total number of 
sites may be defined by e.g. TI, , ' ,  the saturation capacity of species 1. By this definition 
the number of sites is fixed and the vacancy flux balances the fluxes of sites covered 
by species 1 and 2. We only have to multiply the flux of sites covered by species 2 
by ns,2/ns, l  to obtain the mole flux of species 2. The values of gij do not depend 
on the definition. 

Numerical Solution Method 

The differential equations describing the model are non-linear and must be solved 
numerically. The continuum equations were discretized in the x-coordinate by an 
explicit finite difference approximation". This leads to  a set of coupled first order 
differential equations for each slice. The discretized versions of the PDE's were 
integrated in time using a fourth-order Runge-Kutta procedure with variable step- 
size. The procedure solves stiff equations by a semi-implicit method and non-stiff 
by an explicit method. The Runge-Kutta procedure estimates the stepsize within 
the maximum stepsize At allowed. The finite difference approximations for the fluxes 
are: 

(JNf1) = 0 * 

The initial conditions (IC) and the boundary conditions (BC) for 
are 

ei(x,o) = 0 ;  -1 < x < 1 ;  t = 0 ,  

e i ( + i , t ) = e i , ;  x =  + I ;  t < o ,  

a - e i ( o , t ) = o ;  x = o ;  t r o .  
ax 

ransient uptake 

A discontinuity exists at (x, t )  = (k 1, 0) in the concentration functions Oi(x, t ) .  
Since [D] depends on the concentrations (Eq. (16)) there is also a discontinuity 
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in [D] at the start. An alternative scheme was also attempted to avoid the disconti- 
nuity in [D]: 

The local truncation errors introduced by these boundary layer effects do not pene- 
trate the solution and decay provided the method is stable. The stability, the growth 
of the deviation from the true solution, cannot be derived for a non-linear problem. 
In that case the stability does not only depend on the finite difference scheme but 
also on the solution being obtained. If the solution becomes unbounded for bounded 
input values and oscillates with increasing amplitude it is termed unstable. 

RESULTS AND DISCUSSION 

Simulations were performed at boundary conditions near saturation. In this situation 
the molecules will hinder each other most and multicomponent effects are likely to 
be more pronounced. 

EfSect of Grid Size 

The behaviour in the boundary layer is the main concern. The finite difference ap- 
proximation is a poor one at the boundary where the gradients at the start will 
be infinitely large. Use of Eq. (10) leads to stable solutions depending on the input 
values. The local truncation errors decay and an accurate solution is obtained. This 
is shown in Fig. 1 (solid curves 2-4 coincide). The errors may oscillate with de- 
caying amplitude when the discontinuities in (0) and [D] are large. Decreasing At 
and increasing Ax may eliminate the oscillations. 

Use of another difference scheme, Eq. (12) ,  does not lead to oscillations for these 
input values used, but the solution is inaccurate. Refining the grid prevents to  a certain 

1 0  

species 2 

FIG. 1 
Convergence of the numerical solutions. Eq. 
(12): broken lines, Eq. (10): solid lines. 
Curves. 1 A x =  0.2; 2 A x =  0.10; 3 Ax= 
= 0.05: 4 Ax = 0,025, AFo = 1 . IC: 

= 0.10; B z ( &  1 ,  1 )  = 0.85, B ~ v / ~ z v  = 100 
el(x,o) = B+, 0) = 0. BC: el(i-i, I) = 

5 

- -. 

Coliect. Czech. Chem. Commun. (Vol. 57) (1992) 



692 Loos, Verheijen, Moulijn: 

extent the solution from being swamped by the boundary layer effects and this 
solution converges to the solution using Eq. (10) (Fig. I) .  

All simulations in Figs 2-6 were carried out for Ax = 0.025 and AFo = 1 . lo-' 
using Eq. (10). 

Round et a].' obtained solutions of a simplified Onsager model numerically. 
These model equations can also be solved by the numerical procedure used to solve 
the GMS model. The following equations for the fluxes were used: 

The Onsager coefficients L , ,  and LZ2 were assumed constant and the cross coeffi- 
cients L,, and LZl were assumed zero. This means that the matrix [ B ] - '  may be 
replaced in the numerical procedure by the diagonal matrix [ L ] .  The results of 
Round et 31.' were reproduced. 

Eflect of the Ratio of GMS Digusivities and the Boundary Conditions 

The transient uptake of a binary mixture of sorbate molecules was simulated for 
several diffusivity ratios 91v/5B2v. This is shown in Figs 2 and 3 for different 
boundary conditions. In all cases a maximum in the uptake of the fastest diffusing 
species 1 is observed. The height of the maximum relative to the equilibrium value 
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FIG. 2 FIG. 3 
Transient uptake of a binary mixture in Transient uptake of a binary mixture in 
a plane slab as function of the Fourier a plane slab as function of the Fourier 
number for various ratios of diffunivitiei number for variours ratioo of difhuivities 
!Blv/!32v, as indicated. IC: Bl(x, 0) = !BlV/5BZv, as indicated. IC: Bl(x, 0) = 
= t32(x, 0) = 0. BC: el(& I, 1 )  = 0.10; e, = e,(X, 0) = 0, BC: el(+ I, 1 )  = 0.m. e, 
( A l ,  I ) =  0-85 (& 1, t )  = 0.75 
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is approximately the same in Figs 2 and 3. Decreasing Blv results in a lower and 
broader maximum. The uptake of species 2 is not much affected by variation of 
9,". The ratio of the uptake of both species is nearly constant up to the maximum 
in the curve. From then on molecules 1 are replaced by molecules 2 and the curves 
are symmetrical with respect to a horizontal line in Figs 2 and 3. 

The counterdiffusion behaviour, the (partial) replacement of species 1 by species 2 
and vice versa was also simulated. Both cases are shown in Fig. 4. The exchange 
of the slow diffusing component by the fast diffusing component is faster than the 
exchange of the fast diffusing component by a slow diffusing component. The 
numerical solution leads to the same result as the approximate solution by Krishna'. 
The uptake of species 1 and desorption of species 2 is accelerated because the de- 
creasing frictional drag ( 1/Bl2) between these components with increasing concentra- 
tion of species 1 (Eq. (5) )  facilitates the interchange of molecules 1 and 2. 

Concentration Profiles 

The concentration profiles in a half-slab are shown in Fig. 5 for various Fourier 
numbers. The solutions are symmetrical with respect to the center of the slab. At 
the start both species diffuse in the direction of decreasing concentration. For 0.01 < 
< F o  c 0.12 species 1 diffuses against its gradient and the local concentration of 

1.01 I I 

O L  

@'O 02 k uptake o f  1 

\ 

desorption of 2 

I I I J 
0 2  

01 
0 01 Fo 

FIG. 4 

Transient counterdiffusion of rpecies 1 and 2 
in a slab. 91v/g2v = 100. Replacement of 
sp ies  2 by species 1, IC: Bl(x, 0) = 0.10; 
e2(x, 0) = 0.85. BC: el(& I, t )  = 0.85; e, 
(& 1, r )  = 0.10. Replacement of rpecier 1 by 
species 2, IC: e,(x, 0) = 0.85; &(x, 0) = 
= 0.10. BC: e,(k 1, r )  = 0.10; e2(& 1 , t )  = 
= 0.85 

1 .o I I 1 I 

Fo 

FJG. 5 
Profiles of concentration VE distance for 
Blv/g2v = 100. IC: e , ( x ,  0)  = e,(X, 0 )  = 
= 0. BC: el(& 1, t )  = 0.10; e2(k 1, t )  = 
= 0.85. Solid line: species 1,  broken line: 
species 2 

Collect. Czech. Chem. Commun. (Vol. 57) (1992) 



694 Loos. Verheijen, Moulijn : 

this species exceeds the equilibrium concentration. This behaviour can be understood 
from the physical picture of the GMS-model. The gradient of the chemical potential 
of species 2, the thermodynamic force of component 2 acts on component 1 via the 
friction of molecules 2 on 1. Where the gradient of species 2 is large, this may lead 
to species 1 diffusing against its gradient. Beyond the maximum ( F o  > 0.12) the 
profiles have become symmetrical with respect to a horizontal line in Fig. 5 and 
counterdiffusion sets in .  

Comparison with the Approximate Solution 

The GMS model for transient uptake in microporous sorbents was solved by Krishna7 
using the linearized theory of multicomponent mass t r an~fe r”~ .  This theory relies on 
the assumption of constancy of the Fick diffusivity matrix [D] along the diffusion 
path. However, [D] is a function of the concentrations and will have to be calculated 
at average concentrations when using this method. With this assumption, the uptake 
of n species is the n-dimensional matrix analog of the single sorbate uptake solution 
F .  The square matrix function [F] of the averaged Fickian matrix can be evaluated 
after a small time interval AFo using Sylvester’s theorem (see e.g. ref.7). The new 
concentrations so obtained are used to calculate [D] for the next time interval and 
so on. The procedure starts with the Fickian matrix calculated for an empty particle. 
The numerical procedure starts with very different values of [ D ] ,  especially when the 
boundary concentrations are high. The maximum calculated by the approximate 
method for the same conditions is much higher (Fig. 6 ) .  The better agreement with 
the solutions obtained by use of Eq. (12) (Fig. 1, curve 1) can be understood from the 
fact that this scheme also starts with [D] calculated at zero concentrations. For 
smaller grid sizes this solution converges to the numerical solution obtained via 
Eq. (10). In general the approximation will be less accurate in the first part of the 
solution and when the discontinuities at 

1 0  I 1 
I 1 

species 2 

0 01 0.2 0.3 0.L Po 06 

the boundary are large. 

FIG. 6 
Comparison with the approximate solution 
(AFo = 0.0018) obtained by the linearized 
theory. Ic: &(x,  0) = e2(x ,  0) = 0. BC: 
el(hi ,  t )  = 0.10; e2(k 1 ,  t )  = om. glv/ 
/ 9 z v =  100 
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Comparison with Experiment 

The simulations in Figs 2 and 3 are very similar in  shape to measurements of the 
transient uptake of nitrogen and methane in zeolite A by Habgood'. The loading 
of nitrogen overshoots its equilibrium value as in  Fig. 2. For a higher boundary 
concentration of nitrogen it overshoots the loading of methane as well, as in Fig. 3. 
The same was observed4 for the mixture uptake of benzene and heptane in zeolite X. 
The uptake of mixtures of carbon dioxide and sulfur dioxide in mordenite was studied 
by Ma and Roux'. These uptake curves are very similar in shape to the simulations 
in  Fig. 2. 

CONCLUSIONS 

Solutions of the GMS model for surface diffusion were obtained by this numerical 
method. The solutions for transient uptake compare well with experimental transient 
uptake curves of binary mixtures in zeolites found in the literature. The simulated 
concentration profiles in a slab clarify the multicomponent diffusion effects found 
in zeolites. 

To apply the Maxwell-Stefan approach in the description of transient multi- 
component surface diffusion a numerical solution method is necessary. Application 
of the linearized theory may lead to a significant deviation. The reason for the 
different results is the strong dependence of the Fick diffusivities on the concentra- 
tions in a Langmuirian sorbed phase, especially when the total occupancy of the 
sites is high. This dependence is mainly due to the influence of the thermodynamic 
correction factors in the Fick diffusivities. Adsorption isotherms for microporous 
sorbents are usually strongly non-linear and near saturation this leads to a high 
sensitivity of these factors on concentration. The linearized theory relies on the 
assumption of constant Fick diffusivities along the diffusion path. In many cases 
of surface diffusion this assumption is not a good one at the start of the uptake and 
errors will occur i n  this region of the solution. 

-Kurta procedure. 
The authors would like to thank dr.  ir. A .  W, Gerritsen for providing the code of the Runge- 

SYMBOLS 

(A1 
bi 
[BI 
gij GMS diffusivity, m/sZ 
[Dl 
F 
Fo = $22vt/12 Fourier number 

= [ B ] - '  with elements A i j  
coefflcient in Langmuir isotherm, Eq. (7), m2/N 
matrix of inverted GMS-diffusivities deflned by Eq. (8), s/m2 

matrix of Fick diffusivities with elements Dij, m2/s 
single sorbate function giving the approach to equilibrium 
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column vector of diffusive fluxes, mol/ms 
matrix of Onsager coefficients with elements Lij ,  m2/s 
half-thickness of the slab, m 
number of sorbates 
total surface concentration at saturation, mol/m2 
number of slices in the half-slab 
partial pressure of i in the bulk phase, N/mZ 
gas constant, J/mol/K 
time, s 
temperature, K 
velocity of diffusion, m/s 
= r / l  dimensionless distance from the center of the slab 
distance from the center of the slab, m 
matrix of thermodynamic correction factors defined by Eq. 
chemical potential of i, J/mol 
spreading pressure, N/m 
column vector of fractional surface occupancies 

(6 )  with elements r,, 

Subscripts 

refers resp. to species i, j ,  I ,  2 
refers to the number of the slice in the slab 
refers to surface property 
refers to time 
refers to gradient obtained under conditions of constant temperature and spreadin8 
pressure 
refers to vacancies 
refers to coordinate along diffusion path 

Mathematical Symbols 

[ I  
0 

1. 
2. 
3. 

4. 
5. 
6. 
7. 
8. 
9. 

10. 

11. 

square matrix of dimension n 
vector of dimension n 
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APPENDIX' 

The elements of [A] = [ B ] - '  for diffusion of a mixture of two sorbates in a sorbent 
are: 

A , ,  = 9 1 v ( e 1 9 2 v  + (1 - 6 1 )  9 1 2 ) / ( 0 1 9 2 Y  + 0 2 9 l Y  + e v 9 1 2 )  

A 1 2  = ~ 1 9 2 " ( 9 * V  - 9 1 2 ) / ( e 1 9 2 v  + f 3 2 9 1 v  + 0 v 9 1 2 )  

A 2 1  = e 2 9 1 v ( 9 2 v  - 9 1 2 ) / ( & 9 2 v  + 0 2 9 1 v  + & 9 , 2 )  

A 2 2  = 9 2 v ( e 2 9 1 v  + (1 - 0 2 )  9 1 2 ) / ( 6 1 9 2 v  + 0 2 9 1 v  + &%2). (14) 

The elements of the matrix of thermodynamic factors [f] in the case of a binary 
Langmuir adsorption isotherm are: 

, r l l  = 1 + r 1 2 ,  61 r12 = -___ 
1 - el - e2 

, rt2 = 1 + r Z i .  (15) 
rZl = 6 2  

1 - el - e2 
The element of the Fickian matrix [D] are obtained by matrix multiplication (Eq. (9 ) ) :  
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